Рассуждения с числовыми значениями

Покажем применение этого метода сначала на двух несложных примерах.

60. Найдите все значения параметра a, при каждом из которых уравнение

$$||x| - 4| + \sqrt{a^2 - x} = 0 \tag{1}$$

имеет корень. [*]

Решение. Предположим, что для некоторого значения параметра a уравнение (1) имеет корень x_0 , тогда для чисел a и x_0 справедливо числовое равенство:

$$||x_0| - 4| + \sqrt{a^2 - x_0} = 0. (2)$$

Левая часть равенства (2) — сумма неотрицательных чисел, поэтому равенство (2) выполняется лишь при условии, что эти числа равны 0. Число $|x_0| - 4$ равно нулю, если $x_0 = 4$ или $x_0 = -4$. В первом случае равенство (2) верно при $a = \pm 2$, а во втором — равенство (2) неверно при любом значении a.

Проверкой убеждаемся, что уравнение (1) имеет корень 4 при $a = \pm 2$.

Ответ. $a = \pm 2$.

Замечание. Суть рассуждения с числовыми значениями заключается в том, что мы предполагаем, что корень x_0 существует, пишем числовое равенство с x_0 и, используя свойства равенств, неравенств, функций и т. п., находим этот корень — без возведения уравнения в квадрат, раскрытия модулей и т. п. Решение задачи этим методом основано на предположении, что корень x_0 существует, поэтому в конце решения надо сделать проверку — убедиться, что найденное число действительно является корнем уравнения.

61. Найдите все значения параметра a, при каждом из которых уравнение

$$\sqrt{2 - \left| x + a + \frac{1}{x + a} \right|} + x^2 - a^2 = a \tag{1}$$

имеет корень. [*]

Решение. Предположим, что для некоторого значения параметра a уравнение (1) имеет корень x_0 , тогда для чисел a и x_0 справедливо числовое равенство:

$$\sqrt{2 - \left| x_0 + a + \frac{1}{x_0 + a} \right|} + x_0^2 - a^2 = a. \tag{2}$$

Заметим, что $x_0 + a \neq 0$.

Если $x_0+a>0$, то из справедливости неравенства $t+\frac{1}{t}\geq 2$ для t>0 (причём $t+\frac{1}{t}=2$ для t=1) следует, что $\left|x_0+a+\frac{1}{x_0+a}\right|\geq 2$. Тогда квадратный корень определён лишь при условии $x_0+a=1$ и равенство (2) можно переписать в виде

$$(x_0 + a)(x_0 - a) = a,$$

 $x_0 - a = a,$
 $x_0 = 2a.$

Равенствам $x_0 + a = 1$ и $x_0 = 2a$ удовлетворяют лишь числа $x_0 = \frac{2}{3}$ и $a = \frac{1}{3}$.

Если $x_0+a<0$, то из справедливости неравенства $t+\frac{1}{t}\leq -2$ для t<0 (причём $t+\frac{1}{t}=-2$ для t=-1) следует, что $\left|x_0+a+\frac{1}{x_0+a}\right|\geq 2$. Тогда квадратный корень определён лишь при условии $x_0+a=-1$ и равенство (2) можно переписать в виде

$$(x_0 + a)(x_0 - a) = a,$$

 $-x_0 + a = a,$
 $x_0 = 0.$

Равенствам $x_0 + a = -1$ и $x_0 = 0$ удовлетворяют лишь числа $x_0 = 0$ и a = -1.

Проверкой убеждаемся, что уравнение (1) имеет корни: $x = \frac{2}{3}$ при $a = \frac{1}{3}$ и x = 0 при a = -1.

Итак, уравнение (1) имеет корень лишь при a = -1 и $a = \frac{1}{3}$.

Ответ. При a = -1, $a = \frac{1}{3}$.

Применим рассуждения с числовыми значениями для решения «страшного снаружи» задания.

62. При каждом значении параметра *а* решите уравнение

$$\arcsin \frac{x\sqrt{2}}{2} - \arccos \frac{a}{2\pi} + \sqrt{1 - x^2} = \sqrt{2x^2 - 2} + \arctan (2 - x). [*]$$

Решение. Предположим, что для некоторого значения параметра a уравнение (1) имеет корень x_0 , тогда для чисел a и x_0 справедливо числовое равенство:

$$\arcsin \frac{x_0\sqrt{2}}{2} - \arccos \frac{a}{2\pi} + \sqrt{1 - x_0^2} = \sqrt{2x_0^2 - 2} + \arctan(2 - x_0).$$
 (2)

Из справедливости равенства (2) следует, в частности, что выражения $\sqrt{1-x_0^2}$ и $\sqrt{2x_0^2-2}$ определены, а это означает, что число x_0 удовлетворяет одновременно двум неравенствам $1-x_0^2 \ge 0$ и $2x_0^2-2 \ge 0$. Легко проверить, что существует только два таких числа: $x_0=1$ и $x_0=-1$. Рассмотрим оба случая.

1) Если $x_0 = 1$, то равенство (2) можно переписать в виде

$$\arcsin\frac{\sqrt{2}}{2} - \arccos\frac{a}{2\pi} = \arctan 1. \tag{3}$$

Так как $\arcsin\frac{\sqrt{2}}{2} = \frac{\pi}{4}$ и $\arctan 1 = \frac{\pi}{4}$, то равенство (3) выполняется лишь при $a = 2\pi$. Проверка показывает, что при $a = 2\pi$ уравнение (1) имеет единственный корень x = 1.

2) Если $x_0 = -1$, то равенство (2) можно переписать в виде

$$\arcsin\left(-\frac{\sqrt{2}}{2}\right) - \arccos\frac{a}{2\pi} = \arctan 3.$$
 (4)

Так как $\arcsin\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4} < 0$, $-\arccos\frac{a}{2\pi} \le 0$ для тех a, для которых арккосинус определён, то левая часть равенства (4) отрицательна, а правая — положительна. Следовательно, равенство (4) неверно, поэтому число $x_0 = -1$ не является корнем уравнения (1) ни при каком значении параметра.

Итак, при $a=2\pi$ уравнение (1) имеет корень x=1, при $a\neq 2\pi$ уравнение (1) не имеет корней.

Ответ. x = 1 при $a = 2\pi$; нет корней при $a \neq 2\pi$.