Аликвотные дроби

Аликвотной называют дробь с числителем 1, знаменатель которой натуральное число, большее 1. Примеры аликвотных дробей: $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$.

Рассмотрим преобразования, позволяющие представить данную аликвотную дробь в виде суммы двух аликвотных дробей.

$$\Pi_{1}: \frac{1}{a} = \frac{1}{2a} + \frac{1}{2a};$$

$$\Pi_{2}: \frac{1}{a} = \frac{1(a+1)}{a(a+1)} = \frac{a}{a(a+1)} + \frac{1}{a(a+1)} = \frac{1}{a+1} + \frac{1}{a(a+1)};$$

$$\Pi_{3}: \frac{1}{ab} = \frac{1(a+1)}{ab(a+1)} = \frac{a}{ab(a+1)} + \frac{1}{ab(a+1)} = \frac{1}{b(a+1)} + \frac{1}{ab(a+1)}.$$

Поменяв местами a и b получим вариант преобразования Π_3 :

$$\Pi_{4}: \frac{1}{ab} = \frac{1}{a(b+1)} + \frac{1}{ab(b+1)}.$$

$$\Pi_{5}: \frac{1}{ab} = \frac{a+b}{ab(a+b)} = \frac{a}{ab(a+b)} + \frac{b}{ab(a+b)} = \frac{1}{b(a+b)} + \frac{1}{a(a+b)}.$$

Рассмотрим преобразования, позволяющие представить данную аликвотную дробь в виде суммы трёх аликвотных дробей.

$$\Pi_{6}: \frac{1}{a} = \frac{1}{3a} + \frac{1}{3a} + \frac{1}{3a};$$

$$\Pi_{7}: \frac{1}{a} = \frac{1(2a+1)}{a(2a+1)} = \frac{a}{a(2a+1)} + \frac{a}{a(2a+1)} + \frac{1}{a(2a+1)} = \frac{1}{2a+1} + \frac{1}{2a+1} + \frac{1}{a(2a+1)};$$

$$\Pi_{8}: \frac{1}{ab} = \frac{1(a+b+1)}{ab(a+b+1)} = \frac{a}{ab(a+b+1)} + \frac{b}{ab(a+b+1)} + \frac{1}{ab(a+b+1)} = \frac{1}{ab(a+b+1)} + \frac{1}{ab(a+b+1)} = \frac{1}{ab(a+b+1)} + \frac{1}{ab(a+b+1)} = \frac{1}{ab(a+b+1)} + \frac{1}{ab(a+b+1)} + \frac{1}{ab(a+b+1)} = \frac{1}{ab(a+b+1)} + \frac{1}{ab(a+b+1)} + \frac{1}{ab(a+b+1)} + \frac{1}{ab(a+b+1)}.$$

Замечания. 1. Преобразования $\Pi_1 - \Pi_3$ можно получить из преобразования Π_4 , а преобразования $\Pi_6 - \Pi_8$ — из преобразования Π_9 .

- 2. Первоначальный текст раздела «Аликвотные дроби» был опубликован на сайте www.shevkin.ru с пропуском преобразования Π_5 , что было замечено внимательным читателем, приславшим не вытекающий из опубликованной «теории» пример: $\frac{1}{6} = \frac{1}{10} + \frac{1}{15}$. Пришлось добавить потерянное преобразование Π_5 и полученные с его помощью новые ответы в следующих задачах.
 - **1.** Найдите все натуральные числа a и b, такие, что:

Решение. а) Преобразуем различными способами дробь $\frac{1}{2}$:

$$\Pi_1: \frac{1}{2} = \frac{1}{4} + \frac{1}{4};$$
 $\Pi_2: \frac{1}{2} = \frac{1}{3} + \frac{1}{6}.$

б) Преобразуем различными способами дробь $\frac{1}{3}$:

$$\Pi_1: \frac{1}{3} = \frac{1}{6} + \frac{1}{6};$$
 $\Pi_2: \frac{1}{3} = \frac{1}{4} + \frac{1}{12}.$

в) Преобразуем различными способами дробь $\frac{1}{6}$:

$$\Pi_{1}: \frac{1}{6} = \frac{1}{12} + \frac{1}{12}; \qquad \Pi_{2}: \frac{1}{6} = \frac{1}{7} + \frac{1}{42};
\Pi_{3}: \frac{1}{6} = \frac{1}{9} + \frac{1}{18}; \qquad \Pi_{3}: \frac{1}{6} = \frac{1}{8} + \frac{1}{24};
\Pi_{5}: \frac{1}{6} = \frac{1}{10} + \frac{1}{15}.$$

Ответ. a) {3, 6}; {4, 4}; б) {4, 12}; {6, 6}; в) {7, 42}; {8, 24}; {9, 18}; {10, 15}; {12, 12}.

2. Найдите все возможные наборы чисел a, b и c, среди которых есть равные и верно равенство:

a)
$$\frac{1}{2} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$
; 6) $\frac{1}{3} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$. [*]

Ответ. a) {3, 12, 12}; {4, 8, 8}; {5, 5, 10}; {6, 6, 6}; б) {4, 24, 24}; {5, 15, 15}; {6, 12, 12}; {7, 7, 21}; {9, 9, 9}.

3. Четыре натуральных числа a, b, c и d таковы, что

$$1 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}.$$
 (1)

- а) Могут ли все эти числа быть попарно различны?
- б) Может ли одно из этих чисел равняться 7?
- в) Найдите все возможные наборы таких чисел, среди которых есть равные. [1-6]

Решение. а), б) Так как $1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = \frac{1}{2} + \frac{1}{3} + \frac{1}{7} + \frac{1}{42}$, то ответ на вопросы a и δ : да.

в) Используя результаты предыдущих заданий, выпишем все возможные наборы чисел a, b и c, среди которых есть равные и верно равенство (1):

EHCTBO (1):

$$1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4};$$

$$1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{3} + \frac{1}{6} + \frac{1}{4} + \frac{1}{4};$$

$$1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{3} + \frac{1}{6} + \frac{1}{3} + \frac{1}{6};$$

$$1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8};$$

$$1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = \frac{1}{2} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6};$$

$$1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = \frac{1}{2} + \frac{1}{3} + \frac{1}{12} + \frac{1}{12};$$

$$1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{5} + \frac{1}{5} + \frac{1}{10};$$

$$1 = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3} + \frac{1}{3} + \frac{1}{4} + \frac{1}{12}.$$

Ответ. a) Да; б) да; в) {2, 3, 12, 12}; {2, 4, 8, 8}; {2, 5, 5, 10}; {2, 6, 6, 6}; {3, 3, 4, 12}¹; {3, 3, 6, 6}; {3, 4, 4, 6}; {4, 4, 4, 4}.

 $^{^1}$ Эта четвёрка чисел, потеряна в ответе в сборнике **ЕГЭ-2017** : Математика : 30 тренировочных вариантов экзаменационных работ для подготовки к единому государственному экзамену : профильный уровень / под ред. И.В. Ященко. М.: АСТ, 2017. -135 с.